
CSCI 3110 Assignment 2 Solutions

October 13, 2012

1.4 (2 pts) Show that
log(n!) = Θ(n log n).

To show the upper bound, we compare n! with nn. By definition, n! =
∏n

i=1 i while nn =
∏n

i=1 n so
n! ≤ nn for all n ≥ 1. This implies that log(n!) ≤ log(nn) = n log n for all n ≥ 1 and, thus,
log(n!) = O(n log n).

Lower Bound (Method 1):
n! = (1 · 2 · . . . n) ≥ (bn/2c) · · ·n ≥ (n/2) · · · (n/2) (n/2 terms) = (n/2)n/2

Hence: log(n!) ≥ (n/2) log(n/2) = (1/2) · n(log n− log2) = (1/2) · (nlogn− 1) which is Ω(n log n)

Lower Bound (Method 2): Compare n! with (n/2)n/2. n! = (1 · 2 · . . . n) =
((1 · n) · (2 · (n− 1)) · . . . · (dn/2e) if n is odd and is times bn/2c if n is even, so n! = Ω((n/2)n/2, and,
thus log(n!) = Ω(log((n/2)n/2)). Since log((n/2)n/2) = (n/2) log(n/2) = Θ(n log n), we have that
n! = Ω(n log n).

1.31 (3 pts) Consider the problem of computing N ! = 1 · 2 · 3 . . . N .

(a) If N is a n-bit number, how many bits long is N !, approximately in Θ(·) form)?

N ! is Θ(log2(N !)) bits long. From 1.4, we know that log2(N !) = Θ(N log2 N), so N ! is
Θ(N log2 N) bits long. Since N is an n-bit number, this can also be written as Θ(n2n) bits long.

(b) Give an algorithm to compute N ! and analyze its running time.

Factorial(N)

1 if (N = 0)
2 Return 1
3 else
4 Return N · Factorial(N − 1)

This algorithm directly computes N ! using its definition. The algorithm runs for Θ(N) iterations,
and does a multiplication of two O(N logN)-bit numbers and some O(N logN) time work at
each iteration. Thus, the running time is O(NM(N logN)), where M(N logN) is the time
required to multiply two numbers with O(N logN) bits.

1.8 (4 pts) Justify the correctness of the recursive division algorithm given in page 15, and show that it takes
time O(n2) on n-bit inputs. Proof by Induction on x.

Base case: x = 0, alg. returns q = 0, r = 0

Inductive hypothesis: The recursive division algorithm works correctly for 0‘x < X,

i.e. alg. correctly returns (q, r) such that bX/2c = qy + r

Inductive step: If X even; then X = 2bX/2c = 2qy + 2r and alg. returns Q = 2q and R = 2r if R > y
alg returns instead Q = 2q + 1 and R = 2r − y

If X odd; alg. returns X = 2bX/2c+ 1 = 2qy + 2r + 1 nd alg. returns Q = 2q and R = 2r + 1 again if
R > y alg returns instead Q = 2q + 1 and R = 2r + 1− y

The algorithm terminates after n recursive calls, because each call halves x, reducing the number of
bits by one. Each recursive call requires a total of O(n) bit operations, so the total time taken is
O(n2)

1.19 (3 pts) The Fibonacci numbers F0, F1, . . . are given by the recurrence Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.
Show that for any n ≥ 1, gcd(Fn+1, Fn) = 1

We will prove this by induction. Our base case is n = 1, where gcd(F2, F1) = gcd(1, 1) = 1. Now,
assume that the claim holds for all 1 ≤ n ≤ k. By the definition of F ,
gcd(Fk+1, Fk) = gcd(Fk + Fk−1, Fk). By definition, this is the largest number d such that
d|(Fk + Fk−1) and d|Fk. Then xd = Fk + Fk−1 and yd = Fk, for some integers y > x. Subtracting
these two equations gives that (x− y)d = Fk−1, so we also have that Fk−1|d. Since
gcd(Fk, Fk−1) = 1, by the inductive hypothesis, it must be the case that d = 1.

1.27 (3 pts) Consider an RSA key set with p = 17, q = 23, N = 391, and e = 3 (as in Figure 1.9). What value of d
should be used for the secret key? What is the encryption of the message M = 41?

The value of d should be the inverse of e mod (p− 1)(q − 1), calculated by the extended Euclid
algorithm. Following the algorithm forward, we get:

gcd(e, (p− 1)(q − 1)) = ex + (p− 1)(q − 1)y

gcd(3, 352) = 3x + 352y

352 = 3(117) + 1

3 = (1)(3) + 0

Now, substituting backwards to find d, we get:

1 = −117(3) + 352

So, tghe multiplicative inverse of 3 mod 352 is -117. Which is in the same equivalence class as -117 +
and multiple of 352:

−117 + 352 = 235

1 = 3(235)− 2(352)

d = 235

The encryption of the message M = 41 should be

y = Me mod N

= 413 mod 391

= 68291 mod 391

= 105.

1. greedyGCD

(a) Algorithm

greedyGCD(a, b)

1 if (b == 0)
2 Return a
3 r = MIN(a modb, b− a modb)
4 Return greedyGCD(b, r)

2. Correctness
Similar to textbook page 30. Note that gcd(a, b) is the same as gcd(a,−b)

3. Running time
(Refer to the Euclid Complexity hand-out - for details, I will simply highlight the differences here.)
We have as before, r < b and hence 2r < b + r ≤ a
BUT we now have, due to the greedy choice that ensures: r ≤ b/2

Add r to each side:
3r

2
≤ b + r

2
using the original inequalities ≤ a

2

Hence 3r ≤ a. Multiply by b; giving 3rb ≤ ab or rb ≤ ab

3
So, here we have the product of the arguments is a THIRD of the product of the arguments previous
calls. The rest of the analysis follows that of the normal Euclid - except everything is log3.
(A tighter argument seems possible. I think, it is possible to make everything work out such that

rb ≤ ab

4
but as the rabbit said: “I’m late! I’m late!”)

