CSCI 3110 Assignment 2 Solutions

October 13, 2012

1.4 (2 pts) Show that

 $\log(n!) = \Theta(n \log n).$

To show the upper bound, we compare n! with n^n . By definition, $n! = \prod_{i=1}^n i$ while $n^n = \prod_{i=1}^n n$ so $n! \leq n^n$ for all $n \geq 1$. This implies that $\log(n!) \leq \log(n^n) = n \log n$ for all $n \geq 1$ and, thus, $\log(n!) = O(n \log n).$ Lower Bound (Method 1): $n! = (1 \cdot 2 \cdot \ldots n) \geq (\lfloor n/2 \rfloor) \cdots n \geq (n/2) \cdots (n/2) (n/2 \text{ terms}) = (n/2)^{n/2}$ Hence: $\log(n!) \ge (n/2) \log(n/2) = (1/2) \cdot n(\log n - \log 2) = (1/2) \cdot (n \log n - 1)$ which is $\Omega(n \log n)$ Lower Bound (Method 2): Compare n! with $(n/2)^{n/2}$. $n! = (1 \cdot 2 \cdot ... \cdot n) =$ $((1 \cdot n) \cdot (2 \cdot (n-1)) \cdot \ldots \cdot (\lceil n/2 \rceil)$ if n is odd and is times $\lceil n/2 \rceil$ if n is even, so $n! = \Omega((n/2)^{n/2}$, and, thus $\log(n!) = \Omega(\log((n/2)^{n/2}))$. Since $\log((n/2)^{n/2}) = (n/2) \log(n/2) = \Theta(n \log n)$, we have that $n! = \Omega(n \log n).$

- 1.31 (3 pts) Consider the problem of computing $N! = 1 \cdot 2 \cdot 3 \dots N$.
	- (a) If N is a n-bit number, how many bits long is N!, approximately in $\Theta(\cdot)$ form)?

N! is $\Theta(\log_2(N!))$ bits long. From 1.4, we know that $\log_2(N!) = \Theta(N \log_2 N)$, so N! is $\Theta(N \log_2 N)$ bits long. Since N is an n-bit number, this can also be written as $\Theta(n2^n)$ bits long.

(b) Give an algorithm to compute N! and analyze its running time.

 $Factoromial(N)$ 1 if $(N = 0)$ 2 Return 1 3 else 4 Return $N \cdot$ FACTORIAL $(N-1)$

This algorithm directly computes N! using its definition. The algorithm runs for $\Theta(N)$ iterations, and does a multiplication of two $O(N \log N)$ -bit numbers and some $O(N \log N)$ time work at each iteration. Thus, the running time is $O(NM(N \log N))$, where $M(N \log N)$ is the time required to multiply two numbers with $O(N \log N)$ bits.

1.8 (4 pts) Justify the correctness of the recursive division algorithm given in page 15, and show that it takes time $O(n^2)$ on *n*-bit inputs. Proof by Induction on x.

Base case: $x = 0$, alg. returns $q = 0, r = 0$

Inductive hypothesis: The recursive division algorithm works correctly for $0^{\circ}x < X$,

i.e. alg. correctly returns (q, r) such that $|X/2| = qy + r$

Inductive step: If X even; then $X = 2|X/2| = 2qy + 2r$ and alg. returns $Q = 2q$ and $R = 2r$ if $R > y$ alg returns instead $Q = 2q + 1$ and $R = 2r - y$

If X odd; alg. returns $X = 2|X/2| + 1 = 2qy + 2r + 1$ nd alg. returns $Q = 2q$ and $R = 2r + 1$ again if $R > y$ alg returns instead $Q = 2q + 1$ and $R = 2r + 1 - y$

The algorithm terminates after *n* recursive calls, because each call halves x , reducing the number of bits by one. Each recursive call requires a total of $O(n)$ bit operations, so the total time taken is $O(n^2)$

1.19 (3 pts) The Fibonacci numbers F_0, F_1, \ldots are given by the recurrence $F_{n+1} = F_n + F_{n-1}, F_0 = 0, F_1 = 1$. Show that for any $n \geq 1$, $gcd(F_n+1, F_n) = 1$

> We will prove this by induction. Our base case is $n = 1$, where $gcd(F_2, F_1) = gcd(1, 1) = 1$. Now, assume that the claim holds for all $1 \leq n \leq k$. By the definition of F, $gcd(F_{k+1}, F_k) = gcd(F_k + F_{k-1}, F_k)$. By definition, this is the largest number d such that $d(F_k + F_{k-1})$ and $d(F_k$. Then $xd = F_k + F_{k-1}$ and $yd = F_k$, for some integers $y > x$. Subtracting these two equations gives that $(x - y)d = F_{k-1}$, so we also have that F_{k-1}/d . Since $gcd(F_k, F_{k-1}) = 1$, by the inductive hypothesis, it must be the case that $d = 1$.

1.27 (3 pts) Consider an RSA key set with $p = 17$, $q = 23$, $N = 391$, and $e = 3$ (as in Figure 1.9). What value of d should be used for the secret key? What is the encryption of the message $M = 41$?

> The value of d should be the inverse of e mod $(p-1)(q-1)$, calculated by the extended Euclid algorithm. Following the algorithm forward, we get:

$$
gcd(e, (p-1)(q-1)) = ex + (p-1)(q-1)y
$$

\n
$$
gcd(3, 352) = 3x + 352y
$$

\n
$$
352 = 3(117) + 1
$$

\n
$$
3 = (1)(3) + 0
$$

Now, substituting backwards to find d , we get:

$$
1 = -117(3) + 352
$$

So, tghe multiplicative inverse of 3 mod 352 is -117. Which is in the same equivalence class as -117 + and multiple of 352:

$$
-117 + 352 = 235
$$

$$
1 = 3(235) - 2(352)
$$

$$
d = 235
$$

The encryption of the message $M = 41$ should be

$$
y = M^e \mod N
$$

= 41³ mod 391
= 68291 mod 391
= 105.

1. greedyGCD

(a) Algorithm

GREEDY $GCD(a, b)$

- 1 if $(b == 0)$
- 2 Return a
- $3 \quad r = MIN(a \text{ mod}b, b a \text{ mod}b)$
- 4 Return greedyGCD(b, r)

2. Correctness

Similar to textbook page 30. Note that $gcd(a, b)$ is the same as $gcd(a, -b)$

3. Running time

(Refer to the Euclid Complexity hand-out - for details, I will simply highlight the differences here.) We have as before, $r < b$ and hence $2r < b + r \le a$

BUT we now have, due to the greedy choice that ensures: $r \leq b/2$ Add r to each side: $\frac{3r}{2} \le \frac{b+r}{2}$ $\frac{1+r}{2}$ using the original inequalities $\leq \frac{a}{2}$ 2

Hence $3r \leq a$. Multiply by b; giving $3rb \leq ab$ or $rb \leq \frac{ab}{2}$ 3

So, here we have the product of the arguments is a THIRD of the product of the arguments previous calls. The rest of the analysis follows that of the normal Euclid - except everything is \log_3 . (A tighter argument seems possible. I think, it is possible to make everything work out such that $rb \leq \frac{ab}{4}$ $\frac{35}{4}$ but as the rabbit said: "I'm late! I'm late!")